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The extraction of information from measured data about the interactions taking place in a network of
systems is a key topic in modern applied sciences. This topic has been traditionally addressed by considering
bivariate time series, providing methods which are sometimes difficult to extend to multivariate data, the
limiting factor being the computational complexity. Here, we present a computationally viable method based
on black-box modeling which, while theoretically applicable only when a deterministic hypothesis about the
processes behind the recordings is plausible, proves to work also when this assumption is severely affected.
Conceptually, the method is very simple and is composed of three independent steps: in the first step a
state-space reconstruction is performed separately on each measured signal; in the second step, a local model,
i.e., a nonlinear dynamical system, is fitted separately on each �reconstructed� measured signal; afterward, a
linear model of the dynamical interactions is obtained by cross-relating the �reconstructed� measured variables
to the dynamics unexplained by the local models. The method is successfully validated on numerically gen-
erated data. An assessment of its sensitivity to data length and modeling and measurement noise intensity, and
of its applicability to large-scale systems, is also provided.
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I. INTRODUCTION

A key topic in modern applied sciences is the process of
unraveling the principles governing the functional interac-
tions within a network of coupled dynamical systems �1–5�.
For instance, in population biology the interest is focused on
interactions between different populations in a given territory
�6�, while in neuroscience a key question is how single neu-
rons process a certain stimulus within functionally coherent
neuronal assemblies �7�.

The process of inferring the functional topology of such
networks is crucial to understanding the mechanisms of in-
teraction, eventually leading to the formulation of a predic-
tion of their dynamical behavior �8,9�. Usually, this process
consists of estimating the strength and direction of the inter-
dependences among measured signals �time series�. Tradi-
tionally, this estimation has been done by methods assessing
the synchrony among the observed dynamical systems
�10–12�. However, this approach is limiting because it does
not estimate coupling directionality, which is important, for
example, to unravel driver-response interdependences �13�.
For this reason, many methods have been proposed recently
to address this issue: some of them take inspiration from
information theory �12,14� and others exploit salient proper-
ties of deterministic systems such as predictability �13,15,16�
or phase dynamics �17,18�. Unfortunately, most of these
methods have been introduced for dealing with bivariate

time series and can lead to misleading interpretations when
applied to multivariate data, because they are not able to
discriminate between indirect and direct relationships �19�.

The need for multivariate analysis has increased recently
with the growing availability of multiple parallel measure-
ments in modern experimental setups. For stochastic pro-
cesses, this multivariate analysis has already been applied
successfully �20–23�. For deterministic processes, we can
consider two cases: weakly and strongly interacting dynami-
cal systems. In the latter case, strong couplings are seen as
inducing phenomena of synchrony, and methods are already
available for their estimation �24,25�. In the former case, the
estimation of weak couplings has been approached in �26� by
using a nonlinear Granger causality index, in �27,28� by con-
sidering the phase dynamics, and in �29� by using condi-
tional mutual information, an established tool of information
theory �30�. Furthermore, some methods have been proposed
within a particular application in neuroscience �31,32�.

Here, we address the problem of estimating the strength
and direction of weak interdependences between multivariate
time series when a deterministic hypothesis about the pro-
cesses behind the recordings is plausible. The proposed ap-
proach is similar to the one proposed in �27�, though here the
whole dynamics, and not only the phase dynamics, are con-
sidered. More precisely, the approach consists of building a
functional model from the multivariate data by identifying an
autonomous multioutput system. However, such a “black-
box” modeling approach may quickly become computation-
ally intractable, and simplifying assumptions have to be
made. For the case of weakly interacting dynamical systems,
we proceed as follows. For each measured signal, we recon-
struct separately a nonlinear dynamical system. Then, by
assuming weak �linear� interactions, we construct a linear
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model of the interactions by means of a classical linear mul-
tioutput system identification method.

A detailed description of the method is given in Sec. II,
while in Sec. III we test numerically the ability of the
method to correctly estimate couplings within networks of
two and three dynamical systems. In Sec. IV, we illustrate its
sensitivity with respect to the length of data sets and mea-
surement and modeling noise intensity, and its performance
is compared with a reference method. In Sec. V, we discuss
its applicability to large-scale systems. Finally, a discussion
and conclusions are given in Sec. VI.

II. METHOD

Here, we illustrate a method to estimate the connectivity
matrix of several interacting dynamical systems by assuming
that such a network is composed of weakly coupled hetero-
geneous dynamical subsystems.

We denote by ��t��RD, where

��t� = �
��1��t�
]

��i��t�
]

��M��t�
� ,

the state-space vector at time t of the M dynamical sub-
systems. The components ��i��t��Rd�i�

are the state variables
of the generic d�i�-dimensional subsystems �i� and �i=1

M d�i�

=D. The network model is given by the noise-driven system

�̇�t� = F„��t�… + ��t� , �1�

where the vector field F :RD→RD is assumed continuous
and differentiable. The vector ��t��RD represents the un-
avoidable modeling noise, which we assume to be a zero-
mean Gaussian additive process with covariance function
���t� ,��t��	=R��t− t�� and diagonal covariance matrix R,
which is independent of F(��t�) and has low intensity com-
pared to that of F(��t�), such that the hypothesis of deter-
minism of the network dynamics is still tenable.

Let us focus on a generic subsystem �i�. Under the hy-
pothesis of weak coupling, the equation governing the �i�th
dynamics can be written as

�̇�i��t� = FS
�i�
„��i��t�… + �FC

�i�
„��t�… + ��i��t� , �2�

where FS
�i� :Rd�i�→Rd�i�

describes the self-dynamics of the
subsystem �i� in the absence of interactions within the net-

work; FC
�i� :RD→Rd�i�

, weighted by the small constant �, de-
scribes the weak intersubsystem interactions �couplings�; and
��i��Rd�i�

is the �i�th subvector of �.
Under the assumption of Eq. �2�, the average interdepen-

dences along a given trajectory �̃�t� between the subsystem
�i� and any other subsystem �j� can be naturally quantified as

K�i,j� =
1

T



0

T ��
�FC

�i�

�� j �
�=�̃���

d�, ∀ j � i , �3�

where T is the time horizon of the trajectory �̃�t�. Afterward,
by means of a suitable arrangement of all the K�i,j�, i , j
=1, . . . ,M, the matrix K describing the connectivity within
the network can be given as

K = �
0” ¯ K�1,i�

¯ K�1,j�
¯ K�1,M�

] � ] ] ]

K�i,1�
¯ 0” ¯ K�i,j�

¯ K�i,M�

] ] � ] ]

K�j,1�
¯ K�j,i�

¯ 0” ¯ K�j,M�

] ] ] � ]

K�M,1�
¯ K�M,i�

¯ K�M,j�
¯ 0”

� ,

where the generic submatrix K�i,j� of dimension d�i��d�j�

models the coupling from the subsystem �j� to the subsystem
�i�, and the diagonal blocks, representing the self-couplings,
are by assumption set to zero and consequently denoted by 0” .

The goal is to estimate K from measurements. This task is
not straightforward because we do not have normally a direct
access to the state ��t�; however, an observable of it, Y�t�, is
usually available. Here, covering a wide range of situations,
Y�t� is assumed to be related to ��t� by a measurement func-
tion G :RD→RP, which we assume to be smooth and cor-
rupted by some measurement noise 	�t�, which is additive,
zero mean, Gaussian distributed, and independent of
G(��t�).

Moreover, accounting for the fact that measurements are
usually performed with a fixed uniform sampling interval �t
at times t0 , t0+�t , . . . , t0+ �L−1��t, and by denoting discrete
time values as subscripts, we write the measurement equa-
tion of the network as

Yt = G��t� + 	t, �4�

yielding a P-variate time series Yt, where t=0, . . . ,L−1, and
�t=1, without loss of generality.

Let us now further assume that we have available P=M
measurements. Denoting by yt

�i�, t=0, . . . ,L−1, the �i�th sca-
lar time series, we further assume the �i�th component of Eq.
�4� to be a function of ��i� only, namely,

yt
�i� = G�i���t

�i�� + 	t
�i�. �5�

In other words, we exclude the case where one or several
subsystems are not observed and, if more than one observ-
able is measured from the same subsystem, we assume that a
preprocessing technique has been applied to coalesce them
into one.

Under these assumptions, we may proceed to the estima-
tion of the influences model K in three steps: Step 1, a series
of state-space reconstructions, i.e., a state-space reconstruc-
tion is performed separately on each measured signal; step 2,
a series of nonlinear regressions, i.e., a nonlinear dynamical
system is fitted separately on each �reconstructed� measured
signal; and step 3, a linear regression, i.e., a regression be-
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tween all the �reconstructed� measured variables and the dy-
namics unexplained by the local models obtained at the pre-
vious step.

Before going into further details, it should be noted that
each one of these steps relies on standard techniques, i.e.,
state-space reconstruction and �non�linear regressions; hence,
they can be implemented in many ways. In the following, we
will propose a specific implementation for them; however
this is not meant to be a universal solution but, better still, an
good one on average, resulting as the trade-off between ro-
bustness and computational cost under completely blind as-
sumptions. In fact, we would like to stress that the key point
of the approach is the decomposition into these three steps;
the specific algorithmic implementation of each one of them
can and should be tuned to the particular case at hand, ex-
ploiting in this way every piece of a priori knowledge.

Finally, to help the reader, we emphasize that, in this sec-
tion, subscripts denote discrete values, like sampling time,
while superscripts refer to subsystems.

A. First step: State-space reconstruction

The method exploits dynamical state-space properties of
the data; hence, the first step is to reconstruct a state space
that is topologically equivalent to the original one �33�. Be-
cause of the weak interactions, by embedding the time series
y�i� of Eq. �5� we can expect to obtain a state space x�i��Rn�i�

that is dynamically equivalent to the original ��i� and not
to the whole �. This is done on all M measurements, getting
the mixed state space X�RN of the network,1 where N
=�i=1

M n�i�.

B. Second step: Self-modeling

By following the assumption in Sec. II A and naturally
moving to discrete time equations, we use Eq. �2� to write
the dynamics of the reconstructed subsystem �i� as

xt+1
�i� = FS

�i��xt
�i�� + �FC

�i��Xt� + �t
�i�, �6�

where, again, the function FS
�i� :Rn�i�→Rn�i�

describes the dy-
namics of the subsystem �i� in the absence of interactions,

i.e., the �i�th subsystem “self-dynamics;” FC
�i� :RN→Rn�i�

,
weighted by the small constant �, describes the weak inter-
subsystem interactions �couplings�, and �t

�i��Rn�i�
accounts

for the modeling noise.

Let us consider a generic reconstructed trajectory X̃t, and
let us assume, without loss of generality, that it has zero
mean and that FC

�i��0�=0. Then, by Taylor expansion �up to
the first order� about the average point of the trajectory �the
origin� of the second term of Eq. �6�, we obtain

xt+1
�i� = FS

�i��xt
�i�� + �

j�i
��

�FC
�i��X�

�x�j� �
X=0

xt
�j� + �O��Xt�2� + �t

�i�,

�7�

where the n�i��n�j� matrices 
� �F�i�

�x�j� 
X=0 describe the average
couplings directed from the n�j� state variables of subsystem
�j� to the n�i� state variables of subsystem �i�.

According to the hypothesis of weak interactions within

the network, the term 
t
�i�=� j�i
�

�FC
�i��X�

�x�j� 
X=0xt
�j�+�O��Xt�2�

+�t
�i� on the right-hand side of Eq. �7� can be considered

small with respect to the self-dynamic FS
�i��xt

�i��. Hence, given

xt+1
�i� = FS

�i��xt
�i�� + 
t

�i�, �8�

where 
t
�i� is considered as a small modeling noise, and ne-

glecting its small dependence on FS
�i��xt

�i��, we proceed to
identify FS

�i� from the pairs �xt+1
�i� ,xt

�i��. In particular, in the
absence of any further hypothesis that may help in better
tuning the regression, we propose to use a least-squares �in
predictive sense� algorithm. That is, for each subsystem �i�,
we estimate a model F̂S

�i� from data so as to minimize the
total square prediction error, i.e.,

F̂S
�i� = arg min

FS
�i�

�
k=1

l�i�−1

�xk
�i� − FS

�i��xk−1
�i� ��2,

where � · � stands for the two-norm and l�i� is the number of
samples available for subsystem �i� after the embedding.

C. Third step: Cross modeling

Using the self-model F̂S
�i� estimated at the previous step,

we can introduce the modeling residuals r�i�, i.e.,

rt
�i� = xt

�i� − x̂t
�i�, �9�

where x̂t
�i�= F̂S

�i��xt−1
�i� � is the current state predicted on the basis

of the only local past information xt−1
�i� . These residuals rep-

resent the dynamics unjustified by the estimated local self-
models. As a next step, we justify these residual dynamics
with the dynamical interactions within the network. In prac-
tice, according to Eq. �7� we can rewrite Eq. �9� as

rt+1
�i� = �

j�i
��

�FC
�i��X�

�x�j� �
X=0

xt
�j� + �t

�i�, �10�

where �t
�i� accounts for the higher-order terms of Eq. �7� and

the modeling noise; hence, it is small under the hypothesis of
deterministic dynamics and weak interactions, and with a
small dependence on Xt, which we neglect. By exploiting the
linearity of Eq. �10�, the �n�i��� j�in

�j�� coupling matrices

K̂�i,j�= 
�
�FC

�i��X�

�x�j� 
X=0 can be estimated via a linear regression
between the tuples �rt+1

�i� ,xt
�j��∀ j�i. Once again, in the absence

of any further hypothesis that may help in better tuning the
linear regression, we propose to use a least-squares �in the
predictive sense� algorithm. In particular, for each subsystem

�i�, we estimate the Â�i� �n�i��� j�in
�j�� matrix as

Â�i� = arg min
A�i�

�
k=1

min�l�i��−1

�rk
�i� − A�i�Xk−1

�¬i��2,

where X�¬i� is the state vector without the �i�th subsystem
components. Consequently, the estimated matrix1Mixed state space is a term that was formally introduced in �15�.
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Â�i� = �K̂�i,1�
¯ K̂�i,j�i�

¯ K̂�i,M��

is the concatenation of all the nonzero coupling matrices.
Clearly, the estimate of the whole network connectivity ma-

trix K̂ follows straightforwardly as a suitable rearrangement
of the estimated sub-blocks

K̂ = �
0” ¯ K̂�1,i�

¯ K̂�1,j�
¯ K̂�1,M�

] � ] ] ]

K̂�i,1�
¯ 0” ¯ K̂�i,j�

¯ K̂�i,M�

] ] � ] ]

K̂�j,1�
¯ K̂�j,i�

¯ 0” ¯ K̂�j,M�

] ] ] � ]

K̂�M,1�
¯ K̂�M,i�

¯ K̂�M,j�
¯ 0”

� .

D. Remarks

In a generic framework, the use of least-squares proce-
dures is justified by the fact that, under our deterministic and
weak-coupling hypotheses, we want to minimize the random
disturbances 
t

�i� in Eq. �8�, and �t
�i� in Eq. �10�. In particular,

concerning the second �linear� least-squares procedure, it is
important to notice two facts. First, the coupling estimated
via this procedure is the average coupling with respect to the
average point of the trajectory �center of the expansion�. In
general, this does not coincide with the ideal estimate of the
coupling, i.e., the average value of the instantaneous cou-
plings as given by Eq. �3�, although this latter generally can-
not be inferred in a completely blind setup like the one con-
sidered here. Second, if ordinary least-squares procedures are
considered, the estimated couplings will be unbiased under
the assumption that the additive noises, i.e., the �t

�i� in Eq.
�10�, have zero means and equal variances, and are mutually
uncorrelated. In general, these hypotheses will never hold in
the applications, in addition because the �t

�i� account for the
modeling noise which surely introduces some correlation.
However, if necessary, it is easy to consider a
heteroscedasticity-consistent least-squares estimator to ac-
count for the heteroscedasticity and correlation of the noises
�34�; though which kind of estimator to use will depend
heavily on the hypotheses and application considered. Here-
after �cf. Sec. III�, in the absence of further hypotheses, to
keep the method simple we have only accounted for the het-
eroscedasticity of the noises but not for their correlations.

As a further advantage, the ordinary least-squares estima-
tion also supplies a formula for computing the covariance
matrix of the estimates. This further allows us to compute
statistical hypotheses tests concerning the estimated coupling

matrices K̂�i,j� �34�, which will allow a rigorous statistical
analysis in Sec. III B. However, it is important to notice that
the statistical analysis proposed �cf. Appendix A� relies on F
tests �34�; hence, it implicitly assumes that the noises and
errors are normally distributed. To what extent this hypoth-
esis can be considered satisfied depends on the specific ap-
plication, and if it is severely violated, nonparametric testing
should be considered instead of F tests �35�.

In conclusion, it should be noted that usually a single
number quantifying the influence from y�j� to y�i� is more
suitable than a matrix. Therefore, we propose to compute a

norm of K̂�i,j�. For instance, the one-norm would correspond
to detecting the strongest influence under the assumption that
each y�i� is a linear observation of the corresponding x�i�.

III. METHOD VALIDATION

In this section we test the ability of the method to estimate
correctly couplings among interacting systems under the hy-
potheses described in Sec. II. In particular, we address two
issues: first, the assessment of the directionality of the cou-
pling in the case of two mutually coupled systems; second,
the ability to discern between direct and indirect couplings
among three interacting systems.

A. Numerical setup

In the first numerical example, we considered two non-
identical Lorenz dynamical systems �36�, coupled as in Fig.
1�a�. The corresponding dynamical equations are

�̇1
�1� = ��1���2

�1� − �1
�1�� + �1

�1�,

�̇2
�1� = r�1��1

�1� − �2
�1� − �1

�1��3
�1� + C�1,2���2

�1� − �2
�2�� + �2

�1�,

�̇3
�1� = �1

�1��2
�1� − 
�1��3

�1� + �3
�1�,

�̇1
�2� = ��2���2

�2� − �1
�2�� + �1

�2�,

�̇2
�2� = r�2��1

�2� − �2
�2� − �1

�2��3
�2� + C�2,1���2

�1� − �2
�2�� + �2

�2�,

�̇3
�2� = �1

�2��2
�2� − 
�2��3

�2� + �3
�2�, �11�

where � j
�1� ,� j

�2� , j=1,2 ,3, are the state variables of the first
and second oscillators, respectively; ��i�, r�i�, and 
�i�, i
=1,2, are parameters whose values are chosen randomly in a
small interval ��5%� around the standard values 10, 27, and
8/3, respectively; � j

�i�, i=1,2, j=1,2 ,3, are zero-mean un-
correlated Gaussian random noises �set in simulations to a
variance of 1% of the energy of the right-hand side along the
uncoupled attractors�; and C�1,2� and C�2,1� are the strengths of
diffusive couplings between the second-state variables �2

�1�

and �2
�2�. Their values are varied within the interval �0,0.5�,

which guarantees the validity of the hypothesis of weakly
interacting oscillators. In particular, this interval was chosen
such that the synchronization measure introduced in �25�,
which can take values ranging from 0 �for uncoupled sub-
systems� up to 1 �for perfectly synchronized subsystems�,
was lower than 0.15 almost everywhere.

For every considered value of the couplings C�1,2� and
C�2,1�, the differential equations were iterated, starting from
random initial conditions, using the Heun algorithm �37�
with �t=0.005, which was checked to yield numerically
stable results. In order to eliminate transients, the first 10 000
iterations were discarded. Then, after performing a down-
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sampling operation2 at �T=0.02, time series of lengths L
=500 were collected. To ensure repeatability and statistical
stability of the results, we collected a total of 25 trials from
different initial conditions. We measured the variables �2

�1�

and �2
�2�, to which we added zero-mean white Gaussian mea-

surement noise at an intensity of 1% of the signal energy,
i.e., 40 dB of signal to noise ratio �SNR�.

In the second numerical example, we considered a hetero-
geneous network composed of three structurally different dy-
namical subsystems, namely, Rössler �R�, Lorenz �L�, and
Colpitts �C� dynamical systems �36,38,39�. We coupled them
corresponding to the three situations reported in Figs.
1�b�–1�d�. Indeed, these three coupling schemes are repre-
sentative of multivariate settings in which spurious relation-
ships can arise when the analysis is limited to a subset of the
interacting subsystems �40,41�. In Fig. 1�b�, a direct connec-

tion between R and C may be inferred when the analysis
does not marginalize the knowledge about L. In Fig. 1�c� a
direct connection between L and C may be inferred because
of the common source R, also called a confounder. In Fig.
1�d�, a nonexistent interaction between R and C may be in-
ferred because of their common destination or child L.

The equations governing the dynamics of these three
coupled oscillators are

�̇1
�1� = T��2

�1� + �3
�1� + C�1,2���1

�2� − �1
�1��

+ C�1,3���1
�3� − �1

�1�� + �1
�1�� ,

�̇2
�1� = T��1

�1� + a�2
�1� + �2

�1�� ,

�̇3
�1� = T�b + �3

�1���1
�1� − c� + �3

�1�� ,

�̇1
�2� = ���2

�2� − �1
�2�� + C�2,1���1

�1� − �1
�2��

+ C�2,3���1
�3� − �1

�2�� + �1
�2�,

�̇2
�2� = r�1

�2� − �2
�2� − �1

�2��3
�2� + �2

�2�,

�̇3
�2� = �1

�2��2
�2� − 
�3

�2� + �3
�2�,

�̇1
�3� = T� g

Q�1 − k�
���1 − e−�2

�3�
� + �3

�3�� + C�3,1���2
�1� − �2

�3��

+ C�3,2���2
�2� − �2

�3�� + �1
�3�� ,

�̇2
�3� = T� g

Qk
��1 − ���1 − e−�2

�3�
� + �3

�3�� + �2
�3�� ,

�̇3
�3� = − T�Qk�1 − k�

g
��1

�3� + �2
�3�� +

1

Q
�3

�3� + �3
�3�� , �12�

where � j
�1� ,� j

�2� ,� j
�3�, j=1,2 ,3, are the state variables of the

Rössler, Lorenz, and Colpitts dynamical systems, respec-
tively; a=0.4, b=0.4, c=5.7, �=10, 
=8 /3, r=28, g
=100.625, Q=100.15, �=0.996, and k=0.5 are standard valued
parameters; � j

�i�, i , j=1,2 ,3, are zero-mean uncorrelated
Gaussian random noises �set to the strength of 1% of the
energy of the right-hand side along the uncoupled attractors�;
and C�i,j�, j� i, i , j=1,2 ,3, are the strengths of diffusive cou-
plings between the first-state variables �1

�1�, �1
�2�, and �1

�3�. The
parameter T=6 is introduced in order to adapt the relative
speed differences between the three subsystems. To simulate
the three schemes of Figs. 1�b�–1�d�, we set the values of the
coupling strengths as follows: for Fig. 1�b�, C�1,2�=C�1,3�

=C�2,3�=C�3,1�=0 and C�2,1� ,C�3,2� nonzero and positive; for
Fig. 1�c�, C�1,2�=C�1,3�=C�2,3�=C�3,2�=0 and C�2,1� ,C�3,1� non-
zero and positive; and for Fig. 1�d�, C�1,2�=C�1,3�=C�3,2�

=C�3,1�=0 and C�2,1� ,C�2,3� nonzero and positive. To guarantee
the validity of the hypothesis of weakly interacting oscilla-
tors, the active parameters were varied within the interval
�0,0.1� or �0,0.3�, depending on the case. Once again, these

2The down-sampling was performed via linear interpolation of the
signals in the time domain by means of the MATLAB function
interp1.
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FIG. 1. Connection setups used for the validation of the method.
�a� Setup for the directionality assessment—two Lorenz �L1 and L2�
dynamical systems mutually coupled, cf. Eq. �11�. �b�–�d� Setups
for triangular interdependence assessments—coupled Rössler �R�,
Lorenz �L�, and Colpitts �C� dynamical systems, cf. Eq. �12�. Cases
of �b� chain connection, �c� common source, and �d� common child.
�e� Setup for the robustness assessment; nonlinearly coupled
Rössler �R� and Lorenz �L� dynamical systems �cf. Eq. �13��.
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intervals were chosen such that the synchronization measure
introduced in �25� was lower than 0.15 almost everywhere.

Similarly to the previous case, the network was simulated
with the Heun method ��t=0.005� starting every time from
random initial conditions, the first 10 000 points of each tran-
sient were discarded and, by means of a down-sampling
��T=0.02�, 25 trials of 500 points each were collected. We
measured the second-state variables �2

�i� from all oscillators,
adding zero-mean white Gaussian measurement noise at an
intensity of 1% of the signal energy �40 dB SNR�.

B. Data analysis setup

By following the three steps described in Sec. II, the
analysis of the generated data was performed with the fol-
lowing algorithm. As a first step, the state-space reconstruc-
tion from the observations was performed by means of a
principal component analysis �PCA� based embedding tech-
nique �42�. By following procedures similar to those de-
scribed in �12,43�, we performed the PCA on embedded vec-
tors with unit time delay �i.e., Td=0.02� and 25-step window
length �i.e., Tw=0.5�. Finally, we projected the resulting
overembedded space onto the first four components, yielding
four-dimensional reconstructed state spaces. This approach is
suitable for its robustness to noise and for the orthogonality
of the constructed state-space components; the latter is a use-
ful property for the next two steps of �multivariate� identifi-
cation. We remark that this is related to modern methods that
combine features from linear regression and PCA, such as
partial least-squares �44�, total least-squares �45�, and sub-
space identification techniques �46�.

As a second step, radial basis functions �RBFs� were used
to fit the self-models and, in order to improve the RBF mod-

eling, we first identified a linear model by ordinary least-
squares techniques. RBFs provide a very flexible nonlinear
model class and, importantly, an efficient MATLAB toolbox is
available �47�. This toolbox has an automatic algorithm for
choosing the number of RBFs as well as their centers and
radii. In particular, RBF centers and radii are generated by
using regression trees, and model selection is performed by
considering maximum marginal likelihood.3

As a third step, a regularized ordinary least-squares ap-
proach was used �48� to identify the cross dependences. We
used regularization because of the high number of indepen-
dent variables �i.e., state-space components� involved in this
regression step.

As discussed in Sec. II C, at this point a single number
quantifying the influence from y�j� to y�i� would be more

suitable than the estimated connectivity matrix K̂�i,j�. Instead
of applying a norm directly, it would be advisable to zero
those elements of the connectivity matrices which may rep-
resent spurious dependences. To address this concern, we
performed the statistical procedure described in Appendix A.

A MATLAB toolbox implementing the three estimation
steps according to the mentioned setup is available �56�.

C. Results

The results for the directionality assessment are shown in
Fig. 2. The surfaces of the nontrivial elements of the esti-

3We stress once again that RBFs are not a universal solution but
an easy and convenient one for exemplifying the method; other
possibilities could be more appropriate depending upon the real
case at hand.

FIG. 2. Method validation: assessment of the
ability to discern mutual interdependences; cou-
pling setup as in Fig. 1�a�. Dependence of the
nontrivial elements of the estimated connectivity

matrix �K̂�i,j��, j� i, i , j=1,2, upon the mutual
coupling parameters C�1,2� and C�2,1� of Eq. �11�.
The surface coloring represents the precision of
the estimation, i.e., the ratio of the standard de-
viation and the mean of the estimated couplings;
the whiter the color the higher is the precision.
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mated connectivity matrix �K̂�i,j��, i� j, i , j=1,2, are evalu-
ated at 100 evenly spaced points and colored proportionally
to the precision of the estimation, i.e., to the ratio of the
standard deviation and the mean of the estimated couplings.

The coupling estimates �K̂�1,2�� and �K̂�2,1�� scale with the
mutual coupling strengths C�1,2� and C�2,1� �cf. Eq. �11��, re-
spectively, detecting the asymmetry of the mutual influence.
We remark that this holds with a few exceptions. These ex-
ceptions, for instance at C�1,2��0.45 and C�2,1��0.28, occur
at places where the network undergoes a bifurcation, leading
to a jump of 200% �on average over the places� of the syn-
chronization measure previously mentioned �25�. Further-
more, we remark that the estimated couplings decrease
slowly with the increase of both coupling strengths. This
phenomenon can be explained by the fact that the two sub-
systems influence each other and, consequently, become
more and more similar. However, the directionality and rela-
tive strength of the coupling are still correctly estimated and,
as testified by the uniform coloring of the surfaces, these
estimates are uniformly precise.

The results for the triangular dependency assessment are
reported in Figs. 3–5, where the surfaces of the nontrivial

elements of the estimated connectivity matrix �K̂�i,j��, i� j,
i , j=1,2 ,3, are evaluated again at 100 evenly spaced points
and colored proportionally to the precision of the estimation,
i.e., to the ratio of the standard deviation and the mean of the
estimated couplings.

Figure 3 shows the results relative to the coupling setup of

Fig. 1�b�. It shows that �K̂�2,1�� and �K̂�3,2�� scale correctly
with their corresponding coupling strengths C�2,1� and C�3,2�

of Eq. �12�, while all the other estimated interdependences
do not scale with either of the couplings. In particular, this is

remarkable for �K̂�3,1�� and �K̂�1,3��, which, in a bivariate in-
ference approach, would scale with the couplings.

Figure 4 shows the results relative to the coupling setup of

Fig. 1�c�. It shows that �K̂�2,1�� and �K̂�3,1�� scale correctly
with their corresponding coupling strengths C�2,1� and C�3,1�

of Eq. �12�. Once again, the other estimated interdepen-
dences do not scale with either of the couplings. In particu-

FIG. 3. Method validation: assessment of the ability to discern triangular interdependences in the case of a chain connection; coupling

setup as in Fig. 1�b�. Dependence of the nontrivial elements of the estimated connectivity matrix �K̂�i,j��, j� i, i , j=1,2 ,3, upon the nonzero
mutual coupling parameters C�2,1� and C�3,2� of Eq. �12�. Surface coloring as in Fig. 2.
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lar, this is true for �K̂�3,2�� and �K̂�2,3��, which, in a bivariate
inference approach, would scale with the couplings.

Similarly, Fig. 5 shows the results relative to the coupling
setup of Fig. 1�d�. Once again, the estimated active couplings

��K̂�2,1�� and �K̂�2,3��� scale with their corresponding coupling
strengths �C�2,1� and C�2,3��, and the values of the estimated

inactive couplings ��K̂�1,2��, �K̂�1,3��, �K̂�3,1��, and �K̂�3,2��� re-

main close to zero; in particular, �K̂�3,1�� and �K̂�1,3��, which
would turn out to be nonzero in a bivariate analysis setup.

For all three cases, from the rather uniform coloring of the
surfaces, we remark that the estimates are uniformly precise.

For most of the cases considered, the graph topology
could be correctly inferred, because the inactive estimated
couplings are close to zero and lower than the estimated
active ones, though there are exceptions, in particular when
the active couplings are very low.

Finally, it is worth mentioning that in real applications
only one or a pair of conditions might be observed. In this
case, it will be necessary to proceed to a statistical assess-

ment of the presence or absence of the estimated couplings
in order to extract the graph topology. In general, the details
of this assessment will depend on the application at hand and
we do not describe any specific recipes here; however, we
remark that the use of F tests, exploiting the covariance ma-
trix of the estimates as provided by the least-squares estima-
tion, may notably simplify this step.

IV. ROBUSTNESS ASSESSMENT

In real applications, the signal analyzer commonly has to
deal with the problems arising from noise and the small
amount of data. The aim of this section is to assess the sen-
sitivity of the method with respect to the amount of data
available and to the level of noise. At the same time, the
results of the method proposed here are compared with those
obtained via phase dynamics modeling �17�. This latter has
been chosen as a reference because of its similarity with the
method proposed here; in particular, it can be extended to
multivariate signals �27� and, similarly to the method pre-

FIG. 4. Method validation: assessment of the ability to discern triangular interdependences in the case of a common source; coupling

setup as in Fig. 1�c�. Dependence of the nontrivial elements of the estimated connectivity matrix �K̂�i,j��, j� i, i , j=1,2 ,3, upon the nonzero
mutual coupling parameters C�2,1� and C�3,1� of Eq. �12�. Surface coloring as in Fig. 2.
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sented here, is conceived for weakly coupled deterministic
dynamical systems. For convenience of the reader, the
method based on phase dynamics modeling is briefly de-
scribed in Appendix B.

Although both considered methods can be applied to mul-
tivariate signals, to ease the comparison and the interpreta-
tion of the results, we have considered a bivariate test bed.
More precisely, we considered a unidirectionally coupled
network, where an autonomous Rössler oscillator drives a
Lorenz oscillator, as shown in Fig. 1�e�. Furthermore, in or-
der to deny the two most restricting hypotheses of our mod-
eling, i.e., linear coupling and determinism, we considered
nonlinearly coupled subsystems and an increasing amount of
modeling noise. The governing equations are

�̇1
�1� = T��2

�1� + �3
�1� + �1

�1�� ,

�̇2
�1� = T��1

�1� + a�2
�1� + �2

�1�� ,

�̇3
�1� = T�b + �3

�1���1
�1� − c� + �3

�1�� ,

�̇1
�2� = ���2

�2� − �1
�2�� + C�2,1���1

�1��3 + �1
�2�,

�̇2
�2� = ��1

�2� − �2
�2� − �1

�2��3
�2� + �2

�2�,

�̇3
�2� = �1

�2��2
�2� − 
�3

�2� + �3
�2�, �13�

where � j
�1� and � j

�2�, j=1,2 ,3, are the state variables of the
Rössler and Lorenz subsystems, respectively; a, b, c, �, 
,
and r are parameters that are fixed at the standard values, i.e.,
a=0.4, b=0.4, c=5.7, �=10, 
=8 /3, and r=28; the time
scale T=6 once again adapts the speed of the Rössler to that
of the Lorenz system; and, finally, the parameter C�2,1� is
varied in the range �0,0.03� so that we have weak, though
nonlinear, coupling between the two subsystems.

FIG. 5. Method validation: assessment of the ability to discern triangular interdependences in the case of a common child; coupling setup

as in Fig. 1�d�. Dependence of the nontrivial elements of the estimated connectivity matrix �K̂�i,j��, j� i, i , j=1,2 ,3, upon the nonzero mutual
coupling parameters C�2,1� and C�2,3� of Eq. �12�. Surface coloring as in Fig. 2.
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For every considered value of C�2,1� and modeling noise
intensity, the differential equations were iterated, starting
from random initial conditions, using the Heun algorithm
with �t=0.005; the initial 10 000 points of each transient
were dropped and, by means of a down-sampling ��T
=0.02�, we collected a total of 60 000 points, measuring the
coupled variables �1

�1� and �1
�2�.

The robustness of the method with respect to measure-
ment and modeling noise and data length was assessed as
follows. To assess the sensitiveness with respect to measure-
ment noise intensity, we fixed the modeling noise intensity to
40 dB �SNR� and we considered zero-mean white Gaussian
measurement noise at different intensities, i.e., 40, 20, and 12
dB �SNR�. For the sensitivity to modeling noise intensity, we
fixed the measurement noise intensity to 40 dB �SNR� and
we considered white Gaussian modeling noise at different
intensities, i.e., 36, 20, and 12 dB �SNR�. Afterward, for each
of the considered values of C�2,1� and measurement and mod-
eling noise intensities, the two measures of interdependence
were computed by considering 10 000, 30 000 or all 60 000
data points.

For the method presented here, we used the same settings
as described in Sec. III B, while for the phase dynamics

based method we used the Hilbert transform4 to compute
instantaneous phases from the time series �=0.3, and a third-
order Fourier expansion5 for estimating the F in Eq. �B1�.

A. Results

The results are summarized in Figs. 6 and 7, which com-
pare the dependence of the four estimated interdependences

�K̂�2,1��, �K̂�1,2��, ��2,1�, and ��1,2� upon the coupling parameter
C�2,1� of Eq. �13� at different noise intensities and number of

points considered. Black curves denote �K̂�i,j�� and gray

4Although the analytic approach given by the Hilbert transform
provides a unique determination of the phase of a signal, it cannot
avoid the ambiguity of defining the phase for a dynamical system
since the result depends on the choice of the observable. A priori, in
a blind experimental setup, one has no control on the choice of the
observable; hence, we estimated the phase via Hilbert transform
because it is the most commonly used in experimental studies.
However, it is worth mentioning that very recently a technique po-
tentially encompassing this issue was proposed in �55�.

5We mention the fact that the order of the Fourier expansion may
influence the results to some extent.
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FIG. 6. Method validation: assessment of the robustness with respect to data length �number of thousands of points along the rows� and
intensity of measurement noise �SNR along the columns�; coupling setup as in Fig. 1�e�. Dependence of the estimated coupling between the
two subsystems of Eq. �13� upon the nonlinear coupling strength C�2,1� estimated with two different techniques: the method proposed here
�black� and phase dynamics modeling �gray�; from subsystem 1 to 2, solid curves; from subsystem 2 to 1, dotted curves. The dots and errors
bars illustrate the mean values and standard deviations of the estimations, respectively.
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curves are for ��i,j�; the solid curves denote the estimated
active coupling, i.e., from the Rössler to the Lorenz sub-
system, and the dotted curves denote the estimated inactive
coupling, i.e., from the Lorenz to the Rössler subsystem.

For most cases, the estimated active coupling, i.e., �K̂�2,1��
and ��2,1�, are consistently bigger than the estimated inactive
ones, i.e., �K̂�1,2�� and ��1,2�, which indeed remain close to
zero. Consequently, for most, though not all, of the consid-
ered coupling strengths, both methods would allow the infer-
ence of the correct topology and directionality of the cou-
plings.

As expected, for both methods the estimated interdepen-
dences worsen with higher noise intensity and/or small data
length. The method presented here appears to be less sensi-
tive to measurement noise, though for both methods a thresh-
old phenomenon take place in the detection of the active
coupling; this phenomenon is more marked the fewer the
data points. Concerning the sensitiveness with respect to the
modeling noise, when enough data are available both meth-
ods perform well even when the hypothesis of determinism
is severely affected, i.e., in the presence of strong modeling
noise �12 dB SNR�. However, the modeling noise seems to
affect more the method based on the phase dynamics than the
method presented here.

In general, for this numerical setup for which a phase can
be defined, the interdependence estimated with the method
presented here is consistent with the interdependence esti-
mated via the phase dynamics. However, on average, the
former appears to be more reliable �see the error bars�, less
sensitive to both measurement and modeling noise, and
could be applied to arbitrary signals, even when a phase
cannot be defined.

Finally, it is worth mentioning that similar results were
obtained when observing the noncoupled state variables
and/or considering a quadratic coupling.

V. SCALABILITY

Hitherto, we have tested the capability of the method in
standard problems arising in multivariate settings. Still, we
shall discuss its computational feasibility when dealing with
generic P-variate measurements.

Within our gray-box modeling framework, as reported in
the procedure described in Sec. II, we first estimate P “self-
models,” and then we estimate the cross dependences by
means of a multiple linear regression. Consequently, the
costly nonlinear identification part is done separately on each
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FIG. 7. Method validation: assessment of the robustness with respect to data length �number of thousands of points along the rows� and
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of the P subsystems, potentially over a few variables at a
time. Only the final linear regression is done over all the
variables; for the linear regression we can take advantage of
existing efficient software packages �49� which can consider
millions of variables in reasonable time.

In this section, we describe a test performed to assess the
effectiveness of the method when dealing with a large num-
ber of observed subsystems. In particular, we have chosen
P=128, because it represents the state of the art in modern
experimental setups �25,50,51�. We considered a network of
linearly coupled nonidentical Colpitts oscillators, namely,

�̇1
�i� =

g�i�

Q�i��1 − k�
���1 − e−�2

�3�
� + �3

�i��

+ �
j�i

C�i,j���1
�j� − �1

�i�� + �1
�i�,

�̇2
�i� =

g�i�

Q�i�k
��1 − ���1 − e−�2

�3�
� + �3

�i�� + �2
�i�,

�̇3
�i� = −

Q�i�k�1 − k�
g�i� ��1

�i� + �2
�i�� −

1

Q�i��3
�i� + �3

�i�, �14�

where � j
�i� , j=1,2 ,3, are the state variables of each sub-

system i=1, . . . ,128; � and k are parameters fixed at the
standard values 0.996 and 0.5; Q�i� and g�i� are parameters
whose values are chosen randomly in an interval ��10%�
around the standard values 100.15 and 100.625, respectively;
� j

�i� are zero-mean uncorrelated Gaussian random noises �set
in simulations to a variance of 1% of the energy of the right-
hand side along the uncoupled attractors�; and C�i,j� are the
strengths of diffusive couplings between the first-state vari-
ables. We randomly set the connectivity within the network
by choosing an average of two couplings for each subsystem,
with a strength value of 0.07 to satisfy the hypothesis of
weakly interacting oscillators.

The differential equations were iterated, starting from ran-
dom initial conditions, using the Heun algorithm with �t
=0.025, the initial 10 000 points of each transient were
dropped and, by means of a down-sampling ��T=0.063�,
time series of length L=1000 were recorded. We collected a
total of 30 trials from different initial conditions, measuring

the second state variable of each subsystem, i.e., �2
�i� , i

=1, . . . ,128, to which we added zero-mean white Gaussian
measurement noise of different intensities, i.e., 40, 20, and
12 dB �SNR�. Afterward, we assessed the robustness of the
method with respect to measurement noise and data length.
This was done for the chosen connectivity matrix and mea-
surement noise intensities, over 5, 8, 12, 20, and all the 30
trials.

A. Results

The results are reported in Fig. 8, which shows the depen-
dence of the percentage of correctly detected couplings upon
the number of available data points at the different noise
intensities considered. That is, by partitioning all the esti-

mated interdependences �K̂�i,j�� into two clusters, we labeled
the couplings as either present or absent. Figure 8 reports the
percentage of the correctly detected nonzero and zero cou-
plings �black and gray curves, respectively�.

In general, we expect the percentage of the correctly de-
tected absent couplings to be higher than that of the present
couplings, simply because in the considered setup there are
16 000 zero connections against 256 nonzero connections.

The result shows that the reliability of coupling detection
is very high for small noise intensities and, generally, in-
creases with the amount of data available and decreases with
the measurement noise intensity. However, in the case of
strong noise intensity �i.e., 12 dB of SNR�, the percentage of
good detections does not fall below 60% when an adequate
number of points is considered. Note that the power of the
method, i.e., the percentage of good detections, is remark-
ably higher than a purely combinatorial guess, which would
already results in percentages as low as 2% if we knew ex-
actly the number of active links.

VI. DISCUSSION AND CONCLUSIONS

We have proposed a computationally viable method to
infer from multivariate time series the connectivity matrix of
a network of weakly interacting dynamical systems. In com-
mon with other approaches, the method exploits dynamical
properties of the data, and we focused on the problem of
inferring weak couplings also because they are important in
applications �52,53�.
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FIG. 8. Method validation: assessment of the scalability to large numbers of dynamical systems; setup: 128 coupled nonidentical Colpitts
dynamical systems �cf. Eq. �14��. Dependence of the percentage of correctly detected couplings upon data length �number of trials of 1000
samples each� and intensity of measurement noise �SNR�: percentage of correctly detected present �black� and absent �gray� couplings.
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Being intrinsically multivariate and computationally vi-
able, the method is particularly suitable for modern experi-
mental setups, where it is increasingly common to record,
separately but in parallel, the dynamical activity of several
components of the systems under observation.

The intrinsic computational viability is structurally given
by the arrangement of the method into three sequential op-
erations, i.e., a series of state-space reconstructions, a series
of nonlinear regressions, and one linear regression. Of these
operations, the costly nonlinear regression is done iteratively
on few variables at a time, and only the linear regression is
performed over all the variables. Moreover, many well-
established techniques are available for performing these
three operations; hence, each one of them can be indepen-
dently tuned to the specific application without severely af-
fecting the computational complexity of the whole estima-
tion.

Concerning the linear regression, it is worth stressing that
the use of �ordinary� least-squares methods allows the esti-
mation of the couplings together with their covariance ma-
trix. If Gaussian assumptions are tenable, that makes easy the
use of F tests for the statistical assessment of the results.
This has a twofold consequence: first, the statistical analysis
of the �linear� connectivity model can be performed without
time-consuming techniques such as bootstrapping; second, if
needed, it is possible to compute the power of multiple null
hypotheses against selected alternative hypotheses of inter-
est.

When tested on numerically generated data, the method
proved to be able to infer: the asymmetry of coupling for two
mutually coupled nonidentical systems; and the graph topol-
ogy of three coupled heterogeneous systems in three typical
setups where bivariate methods would fail. It proved also to
work in the case of nonlinearly coupled systems with strong
modeling noise, a case that severely violates the two most
restrictive modeling hypotheses, i.e., linear coupling and de-
terminism. Moreover, when compared with a method based
on phase dynamics modeling, the two methods gave consis-
tent results. Concerning this last point, we remark that, while
the proposed method has the advantage of not requiring the
extraction of the phases, which makes it applicable to a
wider class of signals, this may have the disadvantage of
being more prone to errors because it takes into account the
whole dynamics of the network.

Finally, it is important to stress that the proposed method
does not constitute a panacea. In fact, it relies on several
hypotheses, not the least the assumption that we measure at
least one time series from each of the subsystems in the
network. However, among the modern demands of multivari-
ate data analysis, it shows as a promising deterministic mod-
eling based approach, and joins the community of techniques
which the expert signal analyzers should all take into account
when facing real data.

To conclude, we would like to mention the possibility of
relaxing the weak-coupling hypothesis. Despite being theo-
retically possible from the �numerical� modeling point of
view, it raises the nontrivial problem of the network’s state-
space reconstruction from multivariate data, an interesting
problem, whose discussion, however, goes beyond the scope
of this paper.
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APPENDIX A: ASSESSING STATISTICALLY
SIGNIFICANT DEPENDENCES

Here, we report the procedure used to estimate the influ-
ence of a subsystem �j� on a subsystem �i� starting from the

connectivity matrix K̂�i,j� identified in Sec. II C. For the sake

of simplicity, let us focus on a generic element of K̂�i,j�,

which, to simplify the notation, we denote simply as k̂.
Thanks to the least-squares procedure, we also have an

estimate of its standard deviation, which we denote �̂. Under

the assumption that k̂ is normally distributed, with mean �
and variance �2, we wish to test the null hypothesis

H0: � = 0,� = �̂ ,

against the alternative hypothesis

H1: � = k̂,� = �̂ .

From F statistics, we can easily compute the p value;
namely, the probability of a type-I error, which is the prob-
ability that we may wrongly reject the null hypothesis H0
when it is true. Afterward, the p value can be used to com-
pute the probability 
 that we may wrongly accept H0 when
it is false, i.e., the probability of a type-II error. Usually, its
complementary probability, i.e., 1−
, is called the power of
the test of the hypothesis H0 against the alternative hypoth-
esis H1 �34�. Under the normal distribution hypothesis, the
power is given by

1 − 
 = G��L�k̂/�̂ − z� , �A1�

where L� is the number of samples used to get the estimate k̂,
G is the standardized normal distribution function, and z is
such that G�−z�= p holds. We fixed the power of our hypoth-
esis testing to 1−
=0.95, i.e., we allowed 5% of type-II

errors, and, consequently, we zeroed k̂ if the power computed
in Eq. �A1� exceeded this value.

Finally, after repeating the same procedure for all the el-

ements of K̂�i,j�, we applied a two-norm to obtain an estimate
of the influence of subsystem �j� on �i�.

APPENDIX B: ESTIMATION OF INTERACTIONS
VIA PHASE DYNAMICS MODELING

Here, we briefly describe the method, initially proposed in
�17�, for estimating the influence of a subsystem �j� on a
subsystem �i� via phase dynamics modeling. Similarly to the
method proposed here, this method assumes measurement of
one time series from each of the subsystems in the network.
Afterward, once the instantaneous phases have been esti-
mated from the measured signals, this method tests whether
the future time evolution of the phase of one oscillator is
influenced by the phase of the other oscillators.
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To keep the description simple, let us consider the case of
two oscillators, and let us denote by �t

�1� and �t
�2� the instan-

taneous phases estimated from the two signals measured
from them. In the first place, the phase increments over a
finite time interval � are computed, i.e., �t

�i�=�t+�
�i� −�t

�i� , i
=1,2. Afterward, these increments are considered as being
generated by some unknown noisy map

�t
�i� = F�i���t

�1�,�t
�2�� + �t

�i�, i = 1,2, �B1�

and, by using a finite Fourier series, a least-squares estimate

of this map, we call it F̂�i�, is obtained. Finally, the interde-

pendence of the phase dynamics from subsystem 2 to sub-
system 1 is quantified by means of the following coefficient:

��1,2� = 

0

2� 

0

2� � �F̂�1�

���2��2

d��1�d��2�. �B2�

Clearly, the interdependence in the other direction, i.e., ��2,1�,
can be computed in a similar way.

Finally, it is worth noticing that the lack of bias of the
coupling coefficients and the estimation of their variance has
been presented in �54�.
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